Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\left(\frac{1}{14}\right)^{2}}+\sqrt{\left(\frac{4}{7}-1\right)^{2}}
Tangohia te \frac{1}{2} i te \frac{4}{7}, ka \frac{1}{14}.
\sqrt{\frac{1}{196}}+\sqrt{\left(\frac{4}{7}-1\right)^{2}}
Tātaihia te \frac{1}{14} mā te pū o 2, kia riro ko \frac{1}{196}.
\frac{1}{14}+\sqrt{\left(\frac{4}{7}-1\right)^{2}}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{196} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{196}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{14}+\sqrt{\left(-\frac{3}{7}\right)^{2}}
Tangohia te 1 i te \frac{4}{7}, ka -\frac{3}{7}.
\frac{1}{14}+\sqrt{\frac{9}{49}}
Tātaihia te -\frac{3}{7} mā te pū o 2, kia riro ko \frac{9}{49}.
\frac{1}{14}+\frac{3}{7}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{49} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{49}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{2}
Tāpirihia te \frac{1}{14} ki te \frac{3}{7}, ka \frac{1}{2}.