Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\left(\frac{1}{14}\right)^{2}}+\sqrt{\left(\frac{4}{7}-1\right)^{2}}
Tangohia te \frac{1}{2} i te \frac{4}{7}, ka \frac{1}{14}.
\sqrt{\frac{1}{196}}+\sqrt{\left(\frac{4}{7}-1\right)^{2}}
Tātaihia te \frac{1}{14} mā te pū o 2, kia riro ko \frac{1}{196}.
\frac{1}{14}+\sqrt{\left(\frac{4}{7}-1\right)^{2}}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{196} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{196}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{14}+\sqrt{\left(-\frac{3}{7}\right)^{2}}
Tangohia te 1 i te \frac{4}{7}, ka -\frac{3}{7}.
\frac{1}{14}+\sqrt{\frac{9}{49}}
Tātaihia te -\frac{3}{7} mā te pū o 2, kia riro ko \frac{9}{49}.
\frac{1}{14}+\frac{3}{7}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{49} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{49}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{2}
Tāpirihia te \frac{1}{14} ki te \frac{3}{7}, ka \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}