Aromātai
\frac{\sqrt{561}}{4}\approx 5.921359641
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{625}{16}-4}
Tātaihia te \frac{25}{4} mā te pū o 2, kia riro ko \frac{625}{16}.
\sqrt{\frac{625}{16}-\frac{64}{16}}
Me tahuri te 4 ki te hautau \frac{64}{16}.
\sqrt{\frac{625-64}{16}}
Tā te mea he rite te tauraro o \frac{625}{16} me \frac{64}{16}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{561}{16}}
Tangohia te 64 i te 625, ka 561.
\frac{\sqrt{561}}{\sqrt{16}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{561}{16}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{561}}{\sqrt{16}}.
\frac{\sqrt{561}}{4}
Tātaitia te pūtakerua o 16 kia tae ki 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}