Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1}{16}+\left(\frac{1}{3}\right)^{2}}=\frac{1}{2}+\frac{1}{3}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\sqrt{\frac{1}{16}+\frac{1}{9}}=\frac{1}{2}+\frac{1}{3}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\sqrt{\frac{9}{144}+\frac{16}{144}}=\frac{1}{2}+\frac{1}{3}
Ko te maha noa iti rawa atu o 16 me 9 ko 144. Me tahuri \frac{1}{16} me \frac{1}{9} ki te hautau me te tautūnga 144.
\sqrt{\frac{9+16}{144}}=\frac{1}{2}+\frac{1}{3}
Tā te mea he rite te tauraro o \frac{9}{144} me \frac{16}{144}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{25}{144}}=\frac{1}{2}+\frac{1}{3}
Tāpirihia te 9 ki te 16, ka 25.
\frac{5}{12}=\frac{1}{2}+\frac{1}{3}
Tuhia anō te pūtake rua o te whakawehenga \frac{25}{144} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{144}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{5}{12}=\frac{3}{6}+\frac{2}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{5}{12}=\frac{3+2}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{12}=\frac{5}{6}
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{12}=\frac{10}{12}
Ko te maha noa iti rawa atu o 12 me 6 ko 12. Me tahuri \frac{5}{12} me \frac{5}{6} ki te hautau me te tautūnga 12.
\text{false}
Whakatauritea te \frac{5}{12} me te \frac{10}{12}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}