Whakaoti mō x
x=150
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1}{6}x}+2-2=7-2
Me tango 2 mai i ngā taha e rua o te whārite.
\sqrt{\frac{1}{6}x}=7-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\sqrt{\frac{1}{6}x}=5
Tango 2 mai i 7.
\frac{1}{6}x=25
Pūruatia ngā taha e rua o te whārite.
\frac{\frac{1}{6}x}{\frac{1}{6}}=\frac{25}{\frac{1}{6}}
Me whakarea ngā taha e rua ki te 6.
x=\frac{25}{\frac{1}{6}}
Mā te whakawehe ki te \frac{1}{6} ka wetekia te whakareanga ki te \frac{1}{6}.
x=150
Whakawehe 25 ki te \frac{1}{6} mā te whakarea 25 ki te tau huripoki o \frac{1}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}