Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{900}{314}}
Whakarohaina te \frac{9}{3.14} mā te whakarea i te taurunga me te tauraro ki te 100.
\sqrt{\frac{450}{157}}
Whakahekea te hautanga \frac{900}{314} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{450}}{\sqrt{157}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{450}{157}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{450}}{\sqrt{157}}.
\frac{15\sqrt{2}}{\sqrt{157}}
Tauwehea te 450=15^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{15^{2}\times 2} hei hua o ngā pūtake rua \sqrt{15^{2}}\sqrt{2}. Tuhia te pūtakerua o te 15^{2}.
\frac{15\sqrt{2}\sqrt{157}}{\left(\sqrt{157}\right)^{2}}
Whakangāwaritia te tauraro o \frac{15\sqrt{2}}{\sqrt{157}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{157}.
\frac{15\sqrt{2}\sqrt{157}}{157}
Ko te pūrua o \sqrt{157} ko 157.
\frac{15\sqrt{314}}{157}
Hei whakarea \sqrt{2} me \sqrt{157}, whakareatia ngā tau i raro i te pūtake rua.