Aromātai
\frac{5\sqrt{6}}{6}\approx 2.041241452
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\frac{9}{16}}{\frac{1}{8}}-\frac{1}{3}}
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
\sqrt{\frac{9}{16}\times 8-\frac{1}{3}}
Whakawehe \frac{9}{16} ki te \frac{1}{8} mā te whakarea \frac{9}{16} ki te tau huripoki o \frac{1}{8}.
\sqrt{\frac{9\times 8}{16}-\frac{1}{3}}
Tuhia te \frac{9}{16}\times 8 hei hautanga kotahi.
\sqrt{\frac{72}{16}-\frac{1}{3}}
Whakareatia te 9 ki te 8, ka 72.
\sqrt{\frac{9}{2}-\frac{1}{3}}
Whakahekea te hautanga \frac{72}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\sqrt{\frac{27}{6}-\frac{2}{6}}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{9}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\sqrt{\frac{27-2}{6}}
Tā te mea he rite te tauraro o \frac{27}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{25}{6}}
Tangohia te 2 i te 27, ka 25.
\frac{\sqrt{25}}{\sqrt{6}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{25}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{6}}.
\frac{5}{\sqrt{6}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{5\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{5\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}