Aromātai
\frac{\sqrt{1034}}{12}\approx 2.679655865
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { \frac { 87 } { 12 } - ( 1 / 12 ) ^ { 2 } \times 10 }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{29}{4}-\left(\frac{1}{12}\right)^{2}\times 10}
Whakahekea te hautanga \frac{87}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{\frac{29}{4}-\frac{1}{144}\times 10}
Tātaihia te \frac{1}{12} mā te pū o 2, kia riro ko \frac{1}{144}.
\sqrt{\frac{29}{4}-\frac{10}{144}}
Whakareatia te \frac{1}{144} ki te 10, ka \frac{10}{144}.
\sqrt{\frac{29}{4}-\frac{5}{72}}
Whakahekea te hautanga \frac{10}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{522}{72}-\frac{5}{72}}
Ko te maha noa iti rawa atu o 4 me 72 ko 72. Me tahuri \frac{29}{4} me \frac{5}{72} ki te hautau me te tautūnga 72.
\sqrt{\frac{522-5}{72}}
Tā te mea he rite te tauraro o \frac{522}{72} me \frac{5}{72}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{517}{72}}
Tangohia te 5 i te 522, ka 517.
\frac{\sqrt{517}}{\sqrt{72}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{517}{72}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{517}}{\sqrt{72}}.
\frac{\sqrt{517}}{6\sqrt{2}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{\sqrt{517}\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{517}}{6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{517}\sqrt{2}}{6\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{1034}}{6\times 2}
Hei whakarea \sqrt{517} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{1034}}{12}
Whakareatia te 6 ki te 2, ka 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}