Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{64\times 156}{7\times 77}}
Me whakakore tahi te 3\times 13 i te taurunga me te tauraro.
\sqrt{\frac{9984}{7\times 77}}
Whakareatia te 64 ki te 156, ka 9984.
\sqrt{\frac{9984}{539}}
Whakareatia te 7 ki te 77, ka 539.
\frac{\sqrt{9984}}{\sqrt{539}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{9984}{539}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9984}}{\sqrt{539}}.
\frac{16\sqrt{39}}{\sqrt{539}}
Tauwehea te 9984=16^{2}\times 39. Tuhia anō te pūtake rua o te hua \sqrt{16^{2}\times 39} hei hua o ngā pūtake rua \sqrt{16^{2}}\sqrt{39}. Tuhia te pūtakerua o te 16^{2}.
\frac{16\sqrt{39}}{7\sqrt{11}}
Tauwehea te 539=7^{2}\times 11. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 11} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{11}. Tuhia te pūtakerua o te 7^{2}.
\frac{16\sqrt{39}\sqrt{11}}{7\left(\sqrt{11}\right)^{2}}
Whakangāwaritia te tauraro o \frac{16\sqrt{39}}{7\sqrt{11}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{11}.
\frac{16\sqrt{39}\sqrt{11}}{7\times 11}
Ko te pūrua o \sqrt{11} ko 11.
\frac{16\sqrt{429}}{7\times 11}
Hei whakarea \sqrt{39} me \sqrt{11}, whakareatia ngā tau i raro i te pūtake rua.
\frac{16\sqrt{429}}{77}
Whakareatia te 7 ki te 11, ka 77.