Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{8}}{\sqrt{125}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{125}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{125}}.
\frac{2\sqrt{2}}{\sqrt{125}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{2}}{5\sqrt{5}}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\frac{2\sqrt{2}\sqrt{5}}{5\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{5\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{2\sqrt{2}\sqrt{5}}{5\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{2\sqrt{10}}{5\times 5}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{10}}{25}
Whakareatia te 5 ki te 5, ka 25.