Aromātai
\frac{\sqrt{1391}}{650}\approx 0.057378634
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{75+2025+40}{65\times 10^{4}}}
Tātaihia te 45 mā te pū o 2, kia riro ko 2025.
\sqrt{\frac{2100+40}{65\times 10^{4}}}
Tāpirihia te 75 ki te 2025, ka 2100.
\sqrt{\frac{2140}{65\times 10^{4}}}
Tāpirihia te 2100 ki te 40, ka 2140.
\sqrt{\frac{2140}{65\times 10000}}
Tātaihia te 10 mā te pū o 4, kia riro ko 10000.
\sqrt{\frac{2140}{650000}}
Whakareatia te 65 ki te 10000, ka 650000.
\sqrt{\frac{107}{32500}}
Whakahekea te hautanga \frac{2140}{650000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{\sqrt{107}}{\sqrt{32500}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{107}{32500}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{107}}{\sqrt{32500}}.
\frac{\sqrt{107}}{50\sqrt{13}}
Tauwehea te 32500=50^{2}\times 13. Tuhia anō te pūtake rua o te hua \sqrt{50^{2}\times 13} hei hua o ngā pūtake rua \sqrt{50^{2}}\sqrt{13}. Tuhia te pūtakerua o te 50^{2}.
\frac{\sqrt{107}\sqrt{13}}{50\left(\sqrt{13}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{107}}{50\sqrt{13}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{13}.
\frac{\sqrt{107}\sqrt{13}}{50\times 13}
Ko te pūrua o \sqrt{13} ko 13.
\frac{\sqrt{1391}}{50\times 13}
Hei whakarea \sqrt{107} me \sqrt{13}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{1391}}{650}
Whakareatia te 50 ki te 13, ka 650.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}