Aromātai
\frac{\sqrt{14066}}{2600}\approx 0.045615449
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{75+20.25+40}{6.5\times 10^{4}}}
Tātaihia te 4.5 mā te pū o 2, kia riro ko 20.25.
\sqrt{\frac{95.25+40}{6.5\times 10^{4}}}
Tāpirihia te 75 ki te 20.25, ka 95.25.
\sqrt{\frac{135.25}{6.5\times 10^{4}}}
Tāpirihia te 95.25 ki te 40, ka 135.25.
\sqrt{\frac{135.25}{6.5\times 10000}}
Tātaihia te 10 mā te pū o 4, kia riro ko 10000.
\sqrt{\frac{135.25}{65000}}
Whakareatia te 6.5 ki te 10000, ka 65000.
\sqrt{\frac{13525}{6500000}}
Whakarohaina te \frac{135.25}{65000} mā te whakarea i te taurunga me te tauraro ki te 100.
\sqrt{\frac{541}{260000}}
Whakahekea te hautanga \frac{13525}{6500000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{\sqrt{541}}{\sqrt{260000}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{541}{260000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{541}}{\sqrt{260000}}.
\frac{\sqrt{541}}{100\sqrt{26}}
Tauwehea te 260000=100^{2}\times 26. Tuhia anō te pūtake rua o te hua \sqrt{100^{2}\times 26} hei hua o ngā pūtake rua \sqrt{100^{2}}\sqrt{26}. Tuhia te pūtakerua o te 100^{2}.
\frac{\sqrt{541}\sqrt{26}}{100\left(\sqrt{26}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{541}}{100\sqrt{26}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{26}.
\frac{\sqrt{541}\sqrt{26}}{100\times 26}
Ko te pūrua o \sqrt{26} ko 26.
\frac{\sqrt{14066}}{100\times 26}
Hei whakarea \sqrt{541} me \sqrt{26}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{14066}}{2600}
Whakareatia te 100 ki te 26, ka 2600.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}