Aromātai
\frac{22}{3}\approx 7.333333333
Tauwehe
\frac{2 \cdot 11}{3} = 7\frac{1}{3} = 7.333333333333333
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { \frac { 72 } { 2 } } + \sqrt { 1 \frac { 7 } { 9 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{36}+\sqrt{\frac{1\times 9+7}{9}}
Whakawehea te 72 ki te 2, kia riro ko 36.
6+\sqrt{\frac{1\times 9+7}{9}}
Tātaitia te pūtakerua o 36 kia tae ki 6.
6+\sqrt{\frac{9+7}{9}}
Whakareatia te 1 ki te 9, ka 9.
6+\sqrt{\frac{16}{9}}
Tāpirihia te 9 ki te 7, ka 16.
6+\frac{4}{3}
Tuhia anō te pūtake rua o te whakawehenga \frac{16}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{16}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{18}{3}+\frac{4}{3}
Me tahuri te 6 ki te hautau \frac{18}{3}.
\frac{18+4}{3}
Tā te mea he rite te tauraro o \frac{18}{3} me \frac{4}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{22}{3}
Tāpirihia te 18 ki te 4, ka 22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}