Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{667\times 10^{19}\times 199}{459\times 10^{10}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -11 me te 30 kia riro ai te 19.
\sqrt{\frac{199\times 667\times 10^{9}}{459}}
Me whakakore tahi te 10^{10} i te taurunga me te tauraro.
\sqrt{\frac{132733\times 10^{9}}{459}}
Whakareatia te 199 ki te 667, ka 132733.
\sqrt{\frac{132733\times 1000000000}{459}}
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
\sqrt{\frac{132733000000000}{459}}
Whakareatia te 132733 ki te 1000000000, ka 132733000000000.
\frac{\sqrt{132733000000000}}{\sqrt{459}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{132733000000000}{459}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{132733000000000}}{\sqrt{459}}.
\frac{10000\sqrt{1327330}}{\sqrt{459}}
Tauwehea te 132733000000000=10000^{2}\times 1327330. Tuhia anō te pūtake rua o te hua \sqrt{10000^{2}\times 1327330} hei hua o ngā pūtake rua \sqrt{10000^{2}}\sqrt{1327330}. Tuhia te pūtakerua o te 10000^{2}.
\frac{10000\sqrt{1327330}}{3\sqrt{51}}
Tauwehea te 459=3^{2}\times 51. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 51} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{51}. Tuhia te pūtakerua o te 3^{2}.
\frac{10000\sqrt{1327330}\sqrt{51}}{3\left(\sqrt{51}\right)^{2}}
Whakangāwaritia te tauraro o \frac{10000\sqrt{1327330}}{3\sqrt{51}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{51}.
\frac{10000\sqrt{1327330}\sqrt{51}}{3\times 51}
Ko te pūrua o \sqrt{51} ko 51.
\frac{10000\sqrt{67693830}}{3\times 51}
Hei whakarea \sqrt{1327330} me \sqrt{51}, whakareatia ngā tau i raro i te pūtake rua.
\frac{10000\sqrt{67693830}}{153}
Whakareatia te 3 ki te 51, ka 153.