Aromātai
\frac{1000\sqrt{67693830}}{153}\approx 53775.333493849
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{6.67\times 10^{19}\times 1.99}{4.59\times 10^{10}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -11 me te 30 kia riro ai te 19.
\sqrt{\frac{1.99\times 6.67\times 10^{9}}{4.59}}
Me whakakore tahi te 10^{10} i te taurunga me te tauraro.
\sqrt{\frac{13.2733\times 10^{9}}{4.59}}
Whakareatia te 1.99 ki te 6.67, ka 13.2733.
\sqrt{\frac{13.2733\times 1000000000}{4.59}}
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
\sqrt{\frac{13273300000}{4.59}}
Whakareatia te 13.2733 ki te 1000000000, ka 13273300000.
\sqrt{\frac{1327330000000}{459}}
Whakarohaina te \frac{13273300000}{4.59} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{\sqrt{1327330000000}}{\sqrt{459}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1327330000000}{459}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1327330000000}}{\sqrt{459}}.
\frac{1000\sqrt{1327330}}{\sqrt{459}}
Tauwehea te 1327330000000=1000^{2}\times 1327330. Tuhia anō te pūtake rua o te hua \sqrt{1000^{2}\times 1327330} hei hua o ngā pūtake rua \sqrt{1000^{2}}\sqrt{1327330}. Tuhia te pūtakerua o te 1000^{2}.
\frac{1000\sqrt{1327330}}{3\sqrt{51}}
Tauwehea te 459=3^{2}\times 51. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 51} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{51}. Tuhia te pūtakerua o te 3^{2}.
\frac{1000\sqrt{1327330}\sqrt{51}}{3\left(\sqrt{51}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1000\sqrt{1327330}}{3\sqrt{51}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{51}.
\frac{1000\sqrt{1327330}\sqrt{51}}{3\times 51}
Ko te pūrua o \sqrt{51} ko 51.
\frac{1000\sqrt{67693830}}{3\times 51}
Hei whakarea \sqrt{1327330} me \sqrt{51}, whakareatia ngā tau i raro i te pūtake rua.
\frac{1000\sqrt{67693830}}{153}
Whakareatia te 3 ki te 51, ka 153.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}