Aromātai
\frac{\sqrt{35}}{5}\approx 1.183215957
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{5}}{\sqrt{7}}\sqrt[3]{\frac{343}{125}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{7}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{7}}.
\frac{\sqrt{5}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\sqrt[3]{\frac{343}{125}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{5}\sqrt{7}}{7}\sqrt[3]{\frac{343}{125}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{35}}{7}\sqrt[3]{\frac{343}{125}}
Hei whakarea \sqrt{5} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{35}}{7}\times \frac{7}{5}
Tātaitia te \sqrt[3]{\frac{343}{125}} kia tae ki \frac{7}{5}.
\frac{\sqrt{35}\times 7}{7\times 5}
Me whakarea te \frac{\sqrt{35}}{7} ki te \frac{7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{35}}{5}
Me whakakore tahi te 7 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}