Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{5}}{\sqrt{7}}\sqrt[3]{\frac{343}{125}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{7}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{7}}.
\frac{\sqrt{5}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\sqrt[3]{\frac{343}{125}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{5}\sqrt{7}}{7}\sqrt[3]{\frac{343}{125}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{35}}{7}\sqrt[3]{\frac{343}{125}}
Hei whakarea \sqrt{5} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{35}}{7}\times \frac{7}{5}
Tātaitia te \sqrt[3]{\frac{343}{125}} kia tae ki \frac{7}{5}.
\frac{\sqrt{35}\times 7}{7\times 5}
Me whakarea te \frac{\sqrt{35}}{7} ki te \frac{7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{35}}{5}
Me whakakore tahi te 7 i te taurunga me te tauraro.