Aromātai
\frac{11}{28}\approx 0.392857143
Tauwehe
\frac{11}{2 ^ {2} \cdot 7} = 0.39285714285714285
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{25}{16}}-\sqrt{\frac{3}{7}}\sqrt{\frac{12}{7}}
Hei whakarea \sqrt{\frac{5}{2}} me \sqrt{\frac{5}{8}}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5}{4}-\sqrt{\frac{3}{7}}\sqrt{\frac{12}{7}}
Tuhia anō te pūtake rua o te whakawehenga \frac{25}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{5}{4}-\sqrt{\frac{36}{49}}
Hei whakarea \sqrt{\frac{3}{7}} me \sqrt{\frac{12}{7}}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5}{4}-\frac{6}{7}
Tuhia anō te pūtake rua o te whakawehenga \frac{36}{49} hei whakawehenga o ngā pūtake rua \frac{\sqrt{36}}{\sqrt{49}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{35}{28}-\frac{24}{28}
Ko te maha noa iti rawa atu o 4 me 7 ko 28. Me tahuri \frac{5}{4} me \frac{6}{7} ki te hautau me te tautūnga 28.
\frac{35-24}{28}
Tā te mea he rite te tauraro o \frac{35}{28} me \frac{24}{28}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{28}
Tangohia te 24 i te 35, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}