Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{4}{5}\left(\frac{29}{28}-\left(\frac{3}{14}+\frac{5}{4}-\frac{3}{7}\right)\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{11}{14} ki te \frac{1}{4}, ka \frac{29}{28}.
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\left(\frac{41}{28}-\frac{3}{7}\right)\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{3}{14} ki te \frac{5}{4}, ka \frac{41}{28}.
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\frac{29}{28}\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tangohia te \frac{3}{7} i te \frac{41}{28}, ka \frac{29}{28}.
\sqrt{\frac{4}{5}\times 0^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tangohia te \frac{29}{28} i te \frac{29}{28}, ka 0.
\sqrt{\frac{4}{5}\times 0+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tātaihia te 0 mā te pū o 3, kia riro ko 0.
\sqrt{0+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Whakareatia te \frac{4}{5} ki te 0, ka 0.
\sqrt{0+\frac{\frac{9}{4}\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{3}{2} ki te \frac{3}{4}, ka \frac{9}{4}.
\sqrt{0+\frac{\frac{9}{4}\times \frac{3}{7}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Whakahekea te hautanga \frac{9}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{0+\frac{\frac{27}{28}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Whakareatia te \frac{9}{4} ki te \frac{3}{7}, ka \frac{27}{28}.
\sqrt{0+\frac{\frac{27}{28}\times \frac{14}{15}\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{11}{15} ki te \frac{1}{5}, ka \frac{14}{15}.
\sqrt{0+\frac{\frac{9}{10}\times \frac{5}{3}}{\frac{3}{2}}}
Whakareatia te \frac{27}{28} ki te \frac{14}{15}, ka \frac{9}{10}.
\sqrt{0+\frac{\frac{3}{2}}{\frac{3}{2}}}
Whakareatia te \frac{9}{10} ki te \frac{5}{3}, ka \frac{3}{2}.
\sqrt{0+1}
Whakawehea te \frac{3}{2} ki te \frac{3}{2}, kia riro ko 1.
\sqrt{1}
Tāpirihia te 0 ki te 1, ka 1.
1
Tātaitia te pūtakerua o 1 kia tae ki 1.