Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\left(\frac{3}{14}+\frac{5}{4}-\frac{3}{7}\right)\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{11}{14} ki te \frac{1}{4}, ka \frac{29}{28}.
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\left(\frac{41}{28}-\frac{3}{7}\right)\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{3}{14} ki te \frac{5}{4}, ka \frac{41}{28}.
\sqrt{\frac{4}{5}\left(\frac{29}{28}-\frac{29}{28}\right)^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tangohia te \frac{3}{7} i te \frac{41}{28}, ka \frac{29}{28}.
\sqrt{\frac{4}{5}\times 0^{3}+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tangohia te \frac{29}{28} i te \frac{29}{28}, ka 0.
\sqrt{\frac{4}{5}\times 0+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tātaihia te 0 mā te pū o 3, kia riro ko 0.
\sqrt{0+\frac{\left(\frac{3}{2}+\frac{3}{4}\right)\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Whakareatia te \frac{4}{5} ki te 0, ka 0.
\sqrt{0+\frac{\frac{9}{4}\times \frac{9}{21}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{3}{2} ki te \frac{3}{4}, ka \frac{9}{4}.
\sqrt{0+\frac{\frac{9}{4}\times \frac{3}{7}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Whakahekea te hautanga \frac{9}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{0+\frac{\frac{27}{28}\left(\frac{11}{15}+\frac{1}{5}\right)\times \frac{5}{3}}{\frac{3}{2}}}
Whakareatia te \frac{9}{4} ki te \frac{3}{7}, ka \frac{27}{28}.
\sqrt{0+\frac{\frac{27}{28}\times \frac{14}{15}\times \frac{5}{3}}{\frac{3}{2}}}
Tāpirihia te \frac{11}{15} ki te \frac{1}{5}, ka \frac{14}{15}.
\sqrt{0+\frac{\frac{9}{10}\times \frac{5}{3}}{\frac{3}{2}}}
Whakareatia te \frac{27}{28} ki te \frac{14}{15}, ka \frac{9}{10}.
\sqrt{0+\frac{\frac{3}{2}}{\frac{3}{2}}}
Whakareatia te \frac{9}{10} ki te \frac{5}{3}, ka \frac{3}{2}.
\sqrt{0+1}
Whakawehea te \frac{3}{2} ki te \frac{3}{2}, kia riro ko 1.
\sqrt{1}
Tāpirihia te 0 ki te 1, ka 1.
1
Tātaitia te pūtakerua o 1 kia tae ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}