Aromātai
\frac{2\sqrt{5}}{5}\approx 0.894427191
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\sqrt{4}}{\sqrt{3}}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{4}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{3}}.
\frac{\frac{2}{\sqrt{3}}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}}{\sqrt{\frac{8}{3}}}\sqrt{\frac{8}{5}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{8}}{\sqrt{3}}}\sqrt{\frac{8}{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{3}}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}}{\sqrt{3}}}\sqrt{\frac{8}{5}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{8}{5}}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}\sqrt{3}}{3}}\sqrt{\frac{8}{5}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{6}}{3}}\sqrt{\frac{8}{5}}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{3}\times 3}{3\times 2\sqrt{6}}\sqrt{\frac{8}{5}}
Whakawehe \frac{2\sqrt{3}}{3} ki te \frac{2\sqrt{6}}{3} mā te whakarea \frac{2\sqrt{3}}{3} ki te tau huripoki o \frac{2\sqrt{6}}{3}.
\frac{\sqrt{3}}{\sqrt{6}}\sqrt{\frac{8}{5}}
Me whakakore tahi te 2\times 3 i te taurunga me te tauraro.
\frac{\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\sqrt{\frac{8}{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{3}\sqrt{6}}{6}\sqrt{\frac{8}{5}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{3}\sqrt{3}\sqrt{2}}{6}\sqrt{\frac{8}{5}}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{3\sqrt{2}}{6}\sqrt{\frac{8}{5}}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{1}{2}\sqrt{2}\sqrt{\frac{8}{5}}
Whakawehea te 3\sqrt{2} ki te 6, kia riro ko \frac{1}{2}\sqrt{2}.
\frac{1}{2}\sqrt{2}\times \frac{\sqrt{8}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{5}}.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{2}}{\sqrt{5}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{2}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{1}{2}\sqrt{2}\times \frac{2\sqrt{10}}{5}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{10}}{2\times 5}\sqrt{2}
Me whakarea te \frac{1}{2} ki te \frac{2\sqrt{10}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{10}}{5}\sqrt{2}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\sqrt{10}\sqrt{2}}{5}
Tuhia te \frac{\sqrt{10}}{5}\sqrt{2} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{5}\sqrt{2}}{5}
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
\frac{2\sqrt{5}}{5}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}