Whakaoti mō x
x=\frac{7}{15}\approx 0.466666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{4}{3}+\frac{1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\sqrt{\frac{12}{9}+\frac{1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{4}{3} me \frac{1}{9} ki te hautau me te tautūnga 9.
\sqrt{\frac{12+1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{12}{9} me \frac{1}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{13}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Tāpirihia te 12 ki te 1, ka 13.
\sqrt{\frac{52}{36}-\frac{3}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Ko te maha noa iti rawa atu o 9 me 12 ko 36. Me tahuri \frac{13}{9} me \frac{1}{12} ki te hautau me te tautūnga 36.
\sqrt{\frac{52-3}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{52}{36} me \frac{3}{36}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{49}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Tangohia te 3 i te 52, ka 49.
\frac{7}{6}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
Tuhia anō te pūtake rua o te whakawehenga \frac{49}{36} hei whakawehenga o ngā pūtake rua \frac{\sqrt{49}}{\sqrt{36}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{7}{6}=3x\left(\frac{2}{6}+\frac{3}{6}\right)
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{7}{6}=3x\times \frac{2+3}{6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{6}=3x\times \frac{5}{6}
Tāpirihia te 2 ki te 3, ka 5.
\frac{7}{6}=\frac{3\times 5}{6}x
Tuhia te 3\times \frac{5}{6} hei hautanga kotahi.
\frac{7}{6}=\frac{15}{6}x
Whakareatia te 3 ki te 5, ka 15.
\frac{7}{6}=\frac{5}{2}x
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{5}{2}x=\frac{7}{6}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{7}{6}\times \frac{2}{5}
Me whakarea ngā taha e rua ki te \frac{2}{5}, te tau utu o \frac{5}{2}.
x=\frac{7\times 2}{6\times 5}
Me whakarea te \frac{7}{6} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{14}{30}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 2}{6\times 5}.
x=\frac{7}{15}
Whakahekea te hautanga \frac{14}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}