Aromātai
\frac{\sqrt{2}}{9}+2\sqrt{3}\approx 3.621236455
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { \frac { 36 } { 3 } } + \sqrt { \frac { 2 } { 81 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{12}+\sqrt{\frac{2}{81}}
Whakawehea te 36 ki te 3, kia riro ko 12.
2\sqrt{3}+\sqrt{\frac{2}{81}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}+\frac{\sqrt{2}}{\sqrt{81}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{81}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{81}}.
2\sqrt{3}+\frac{\sqrt{2}}{9}
Tātaitia te pūtakerua o 81 kia tae ki 9.
\frac{9\times 2\sqrt{3}}{9}+\frac{\sqrt{2}}{9}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{3} ki te \frac{9}{9}.
\frac{9\times 2\sqrt{3}+\sqrt{2}}{9}
Tā te mea he rite te tauraro o \frac{9\times 2\sqrt{3}}{9} me \frac{\sqrt{2}}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18\sqrt{3}+\sqrt{2}}{9}
Mahia ngā whakarea i roto o 9\times 2\sqrt{3}+\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}