Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{12}+\sqrt{\frac{2}{81}}
Whakawehea te 36 ki te 3, kia riro ko 12.
2\sqrt{3}+\sqrt{\frac{2}{81}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{3}+\frac{\sqrt{2}}{\sqrt{81}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{81}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{81}}.
2\sqrt{3}+\frac{\sqrt{2}}{9}
Tātaitia te pūtakerua o 81 kia tae ki 9.
\frac{9\times 2\sqrt{3}}{9}+\frac{\sqrt{2}}{9}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{3} ki te \frac{9}{9}.
\frac{9\times 2\sqrt{3}+\sqrt{2}}{9}
Tā te mea he rite te tauraro o \frac{9\times 2\sqrt{3}}{9} me \frac{\sqrt{2}}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18\sqrt{3}+\sqrt{2}}{9}
Mahia ngā whakarea i roto o 9\times 2\sqrt{3}+\sqrt{2}.