Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{343}}{\sqrt{50}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{343}{50}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{343}}{\sqrt{50}}.
\frac{7\sqrt{7}}{\sqrt{50}}
Tauwehea te 343=7^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 7} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{7}. Tuhia te pūtakerua o te 7^{2}.
\frac{7\sqrt{7}}{5\sqrt{2}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
\frac{7\sqrt{7}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{7\sqrt{7}}{5\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{7\sqrt{7}\sqrt{2}}{5\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{7\sqrt{14}}{5\times 2}
Hei whakarea \sqrt{7} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{7\sqrt{14}}{10}
Whakareatia te 5 ki te 2, ka 10.