Aromātai
\frac{\sqrt{370}}{30000000000}\approx 6.411794687 \cdot 10^{-10}
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{3.7}{9\times 10^{18}}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\sqrt{\frac{3.7}{9\times 1000000000000000000}}
Tātaihia te 10 mā te pū o 18, kia riro ko 1000000000000000000.
\sqrt{\frac{3.7}{9000000000000000000}}
Whakareatia te 9 ki te 1000000000000000000, ka 9000000000000000000.
\sqrt{\frac{37}{90000000000000000000}}
Whakarohaina te \frac{3.7}{9000000000000000000} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{\sqrt{37}}{\sqrt{90000000000000000000}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{37}{90000000000000000000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{37}}{\sqrt{90000000000000000000}}.
\frac{\sqrt{37}}{3000000000\sqrt{10}}
Tauwehea te 90000000000000000000=3000000000^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{3000000000^{2}\times 10} hei hua o ngā pūtake rua \sqrt{3000000000^{2}}\sqrt{10}. Tuhia te pūtakerua o te 3000000000^{2}.
\frac{\sqrt{37}\sqrt{10}}{3000000000\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{37}}{3000000000\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{\sqrt{37}\sqrt{10}}{3000000000\times 10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{\sqrt{370}}{3000000000\times 10}
Hei whakarea \sqrt{37} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{370}}{30000000000}
Whakareatia te 3000000000 ki te 10, ka 30000000000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}