Aromātai
\frac{2\sqrt{15}}{15}\approx 0.516397779
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{9}{15}-\frac{5}{15}}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{3}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
\sqrt{\frac{9-5}{15}}
Tā te mea he rite te tauraro o \frac{9}{15} me \frac{5}{15}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{4}{15}}
Tangohia te 5 i te 9, ka 4.
\frac{\sqrt{4}}{\sqrt{15}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{4}{15}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{15}}.
\frac{2}{\sqrt{15}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{2\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
\frac{2\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}