Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}}{\sqrt{5}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{5}}.
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{15}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{15}\left(x+1\right)}{5}+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Tuhia te \frac{\sqrt{15}}{5}\left(x+1\right) hei hautanga kotahi.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}}{\sqrt{3}}\left(x-1\right)=\frac{1}{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-1\right)=\frac{1}{15}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{3}\left(x-1\right)=\frac{1}{15}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}}{3}\left(x-1\right)=\frac{1}{15}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}\left(x-1\right)}{3}=\frac{1}{15}
Tuhia te \frac{\sqrt{15}}{3}\left(x-1\right) hei hautanga kotahi.
\frac{3\sqrt{15}\left(x+1\right)}{15}+\frac{5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 3 ko 15. Whakareatia \frac{\sqrt{15}\left(x+1\right)}{5} ki te \frac{3}{3}. Whakareatia \frac{\sqrt{15}\left(x-1\right)}{3} ki te \frac{5}{5}.
\frac{3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Tā te mea he rite te tauraro o \frac{3\sqrt{15}\left(x+1\right)}{15} me \frac{5\sqrt{15}\left(x-1\right)}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}}{15}=\frac{1}{15}
Mahia ngā whakarea i roto o 3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right).
\frac{8\sqrt{15}x-2\sqrt{15}}{15}=\frac{1}{15}
Whakakotahitia ngā kupu rite i 3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}.
8\sqrt{15}x-2\sqrt{15}=\frac{1}{15}\times 15
Me whakarea ngā taha e rua ki te 15.
8\sqrt{15}x-2\sqrt{15}=1
Me whakakore te 15 me te 15.
8\sqrt{15}x=1+2\sqrt{15}
Me tāpiri te 2\sqrt{15} ki ngā taha e rua.
8\sqrt{15}x=2\sqrt{15}+1
He hanga arowhānui tō te whārite.
\frac{8\sqrt{15}x}{8\sqrt{15}}=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Whakawehea ngā taha e rua ki te 8\sqrt{15}.
x=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Mā te whakawehe ki te 8\sqrt{15} ka wetekia te whakareanga ki te 8\sqrt{15}.
x=\frac{\sqrt{15}}{120}+\frac{1}{4}
Whakawehe 1+2\sqrt{15} ki te 8\sqrt{15}.