Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}}{\sqrt{4}}\left(-\sqrt{\frac{2\times 3+2}{3}}\right)\sqrt{56}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{4}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{4}}.
\frac{\sqrt{3}}{2}\left(-\sqrt{\frac{2\times 3+2}{3}}\right)\sqrt{56}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{\sqrt{3}}{2}\left(-\sqrt{\frac{6+2}{3}}\right)\sqrt{56}
Whakareatia te 2 ki te 3, ka 6.
\frac{\sqrt{3}}{2}\left(-\sqrt{\frac{8}{3}}\right)\sqrt{56}
Tāpirihia te 6 ki te 2, ka 8.
\frac{\sqrt{3}}{2}\left(-\frac{\sqrt{8}}{\sqrt{3}}\right)\sqrt{56}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{3}}.
\frac{\sqrt{3}}{2}\left(-\frac{2\sqrt{2}}{\sqrt{3}}\right)\sqrt{56}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{3}}{2}\left(-\frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\sqrt{56}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}}{2}\left(-\frac{2\sqrt{2}\sqrt{3}}{3}\right)\sqrt{56}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}}{2}\left(-\frac{2\sqrt{6}}{3}\right)\sqrt{56}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{3}}{2}\left(-\frac{2\sqrt{6}}{3}\right)\times 2\sqrt{14}
Tauwehea te 56=2^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 14} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{14}. Tuhia te pūtakerua o te 2^{2}.
\frac{-\sqrt{3}\times 2\sqrt{6}}{2\times 3}\times 2\sqrt{14}
Me whakarea te \frac{\sqrt{3}}{2} ki te -\frac{2\sqrt{6}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{3}\sqrt{6}}{3}\times 2\sqrt{14}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{-\sqrt{3}\sqrt{6}\times 2}{3}\sqrt{14}
Tuhia te \frac{-\sqrt{3}\sqrt{6}}{3}\times 2 hei hautanga kotahi.
\frac{-\sqrt{3}\sqrt{6}\times 2\sqrt{14}}{3}
Tuhia te \frac{-\sqrt{3}\sqrt{6}\times 2}{3}\sqrt{14} hei hautanga kotahi.
\frac{-\sqrt{3}\sqrt{3}\sqrt{2}\times 2\sqrt{14}}{3}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{-3\sqrt{2}\times 2\sqrt{14}}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{-3\sqrt{2}\times 2\sqrt{2}\sqrt{7}}{3}
Tauwehea te 14=2\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2\times 7} hei hua o ngā pūtake rua \sqrt{2}\sqrt{7}.
\frac{-3\times 2\times 2\sqrt{7}}{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{-6\times 2\sqrt{7}}{3}
Whakareatia te -3 ki te 2, ka -6.
\frac{-12\sqrt{7}}{3}
Whakareatia te -6 ki te 2, ka -12.
-4\sqrt{7}
Whakawehea te -12\sqrt{7} ki te 3, kia riro ko -4\sqrt{7}.