Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{3}{2}\left(\frac{45}{36}-\frac{40}{36}\right)+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Ko te maha noa iti rawa atu o 4 me 9 ko 36. Me tahuri \frac{5}{4} me \frac{10}{9} ki te hautau me te tautūnga 36.
\sqrt{\frac{3}{2}\times \frac{45-40}{36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Tā te mea he rite te tauraro o \frac{45}{36} me \frac{40}{36}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{3}{2}\times \frac{5}{36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Tangohia te 40 i te 45, ka 5.
\sqrt{\frac{3\times 5}{2\times 36}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Me whakarea te \frac{3}{2} ki te \frac{5}{36} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{15}{72}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 5}{2\times 36}.
\sqrt{\frac{5}{24}+\frac{1}{16}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Whakahekea te hautanga \frac{15}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{\frac{10}{48}+\frac{3}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Ko te maha noa iti rawa atu o 24 me 16 ko 48. Me tahuri \frac{5}{24} me \frac{1}{16} ki te hautau me te tautūnga 48.
\sqrt{\frac{10+3}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Tā te mea he rite te tauraro o \frac{10}{48} me \frac{3}{48}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{13}{48}-\frac{\frac{1}{2}-\frac{7}{18}}{\frac{16}{3}}}
Tāpirihia te 10 ki te 3, ka 13.
\sqrt{\frac{13}{48}-\frac{\frac{9}{18}-\frac{7}{18}}{\frac{16}{3}}}
Ko te maha noa iti rawa atu o 2 me 18 ko 18. Me tahuri \frac{1}{2} me \frac{7}{18} ki te hautau me te tautūnga 18.
\sqrt{\frac{13}{48}-\frac{\frac{9-7}{18}}{\frac{16}{3}}}
Tā te mea he rite te tauraro o \frac{9}{18} me \frac{7}{18}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{13}{48}-\frac{\frac{2}{18}}{\frac{16}{3}}}
Tangohia te 7 i te 9, ka 2.
\sqrt{\frac{13}{48}-\frac{\frac{1}{9}}{\frac{16}{3}}}
Whakahekea te hautanga \frac{2}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{13}{48}-\frac{1}{9}\times \frac{3}{16}}
Whakawehe \frac{1}{9} ki te \frac{16}{3} mā te whakarea \frac{1}{9} ki te tau huripoki o \frac{16}{3}.
\sqrt{\frac{13}{48}-\frac{1\times 3}{9\times 16}}
Me whakarea te \frac{1}{9} ki te \frac{3}{16} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{13}{48}-\frac{3}{144}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{9\times 16}.
\sqrt{\frac{13}{48}-\frac{1}{48}}
Whakahekea te hautanga \frac{3}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{\frac{13-1}{48}}
Tā te mea he rite te tauraro o \frac{13}{48} me \frac{1}{48}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{12}{48}}
Tangohia te 1 i te 13, ka 12.
\sqrt{\frac{1}{4}}
Whakahekea te hautanga \frac{12}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{1}{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}