Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{279}}{\sqrt{448}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{279}{448}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{279}}{\sqrt{448}}.
\frac{3\sqrt{31}}{\sqrt{448}}
Tauwehea te 279=3^{2}\times 31. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 31} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{31}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{31}}{8\sqrt{7}}
Tauwehea te 448=8^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 7} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{7}. Tuhia te pūtakerua o te 8^{2}.
\frac{3\sqrt{31}\sqrt{7}}{8\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{31}}{8\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{3\sqrt{31}\sqrt{7}}{8\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{3\sqrt{217}}{8\times 7}
Hei whakarea \sqrt{31} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{217}}{56}
Whakareatia te 8 ki te 7, ka 56.