Aromātai
\frac{3\sqrt{217}}{56}\approx 0.789156421
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{279}}{\sqrt{448}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{279}{448}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{279}}{\sqrt{448}}.
\frac{3\sqrt{31}}{\sqrt{448}}
Tauwehea te 279=3^{2}\times 31. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 31} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{31}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{31}}{8\sqrt{7}}
Tauwehea te 448=8^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 7} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{7}. Tuhia te pūtakerua o te 8^{2}.
\frac{3\sqrt{31}\sqrt{7}}{8\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{31}}{8\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{3\sqrt{31}\sqrt{7}}{8\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{3\sqrt{217}}{8\times 7}
Hei whakarea \sqrt{31} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{217}}{56}
Whakareatia te 8 ki te 7, ka 56.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}