Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{92}{3}}
Whakahekea te hautanga \frac{276}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\sqrt{92}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{92}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{92}}{\sqrt{3}}.
\frac{2\sqrt{23}}{\sqrt{3}}
Tauwehea te 92=2^{2}\times 23. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 23} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{23}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{23}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{23}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{23}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{69}}{3}
Hei whakarea \sqrt{23} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.