Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{1324}{1083}\times \frac{3016}{2500}}
Whakahekea te hautanga \frac{2648}{2166} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{1324}{1083}\times \frac{754}{625}}
Whakahekea te hautanga \frac{3016}{2500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\sqrt{\frac{1324\times 754}{1083\times 625}}
Me whakarea te \frac{1324}{1083} ki te \frac{754}{625} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{998296}{676875}}
Mahia ngā whakarea i roto i te hautanga \frac{1324\times 754}{1083\times 625}.
\frac{\sqrt{998296}}{\sqrt{676875}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{998296}{676875}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{998296}}{\sqrt{676875}}.
\frac{2\sqrt{249574}}{\sqrt{676875}}
Tauwehea te 998296=2^{2}\times 249574. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 249574} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{249574}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{249574}}{475\sqrt{3}}
Tauwehea te 676875=475^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{475^{2}\times 3} hei hua o ngā pūtake rua \sqrt{475^{2}}\sqrt{3}. Tuhia te pūtakerua o te 475^{2}.
\frac{2\sqrt{249574}\sqrt{3}}{475\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{249574}}{475\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{249574}\sqrt{3}}{475\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{748722}}{475\times 3}
Hei whakarea \sqrt{249574} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{748722}}{1425}
Whakareatia te 475 ki te 3, ka 1425.