Aromātai
\frac{4000\sqrt{6670}}{667}\approx 489.775519978
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { \frac { 24 ^ { 2 } } { 24012 \times 10 ^ { - 7 } } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{576}{24012\times 10^{-7}}}
Tātaihia te 24 mā te pū o 2, kia riro ko 576.
\sqrt{\frac{576}{24012\times \frac{1}{10000000}}}
Tātaihia te 10 mā te pū o -7, kia riro ko \frac{1}{10000000}.
\sqrt{\frac{576}{\frac{6003}{2500000}}}
Whakareatia te 24012 ki te \frac{1}{10000000}, ka \frac{6003}{2500000}.
\sqrt{576\times \frac{2500000}{6003}}
Whakawehe 576 ki te \frac{6003}{2500000} mā te whakarea 576 ki te tau huripoki o \frac{6003}{2500000}.
\sqrt{\frac{160000000}{667}}
Whakareatia te 576 ki te \frac{2500000}{6003}, ka \frac{160000000}{667}.
\frac{\sqrt{160000000}}{\sqrt{667}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{160000000}{667}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{160000000}}{\sqrt{667}}.
\frac{4000\sqrt{10}}{\sqrt{667}}
Tauwehea te 160000000=4000^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{4000^{2}\times 10} hei hua o ngā pūtake rua \sqrt{4000^{2}}\sqrt{10}. Tuhia te pūtakerua o te 4000^{2}.
\frac{4000\sqrt{10}\sqrt{667}}{\left(\sqrt{667}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4000\sqrt{10}}{\sqrt{667}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{667}.
\frac{4000\sqrt{10}\sqrt{667}}{667}
Ko te pūrua o \sqrt{667} ko 667.
\frac{4000\sqrt{6670}}{667}
Hei whakarea \sqrt{10} me \sqrt{667}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}