Whakaoti mō x
x=\frac{1}{48}\approx 0.020833333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{2}{3}-5x}=\sqrt{3x+\frac{1}{2}}
Me tango -\sqrt{3x+\frac{1}{2}} mai i ngā taha e rua o te whārite.
\left(\sqrt{\frac{2}{3}-5x}\right)^{2}=\left(\sqrt{3x+\frac{1}{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\frac{2}{3}-5x=\left(\sqrt{3x+\frac{1}{2}}\right)^{2}
Tātaihia te \sqrt{\frac{2}{3}-5x} mā te pū o 2, kia riro ko \frac{2}{3}-5x.
\frac{2}{3}-5x=3x+\frac{1}{2}
Tātaihia te \sqrt{3x+\frac{1}{2}} mā te pū o 2, kia riro ko 3x+\frac{1}{2}.
\frac{2}{3}-5x-3x=\frac{1}{2}
Tangohia te 3x mai i ngā taha e rua.
\frac{2}{3}-8x=\frac{1}{2}
Pahekotia te -5x me -3x, ka -8x.
-8x=\frac{1}{2}-\frac{2}{3}
Tangohia te \frac{2}{3} mai i ngā taha e rua.
-8x=\frac{3}{6}-\frac{4}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
-8x=\frac{3-4}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tango rāua mā te tango i ō raua taurunga.
-8x=-\frac{1}{6}
Tangohia te 4 i te 3, ka -1.
x=\frac{-\frac{1}{6}}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{-1}{6\left(-8\right)}
Tuhia te \frac{-\frac{1}{6}}{-8} hei hautanga kotahi.
x=\frac{-1}{-48}
Whakareatia te 6 ki te -8, ka -48.
x=\frac{1}{48}
Ka taea te hautanga \frac{-1}{-48} te whakamāmā ki te \frac{1}{48} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
\sqrt{\frac{2}{3}-5\times \frac{1}{48}}-\sqrt{3\times \frac{1}{48}+\frac{1}{2}}=0
Whakakapia te \frac{1}{48} mō te x i te whārite \sqrt{\frac{2}{3}-5x}-\sqrt{3x+\frac{1}{2}}=0.
0=0
Whakarūnātia. Ko te uara x=\frac{1}{48} kua ngata te whārite.
x=\frac{1}{48}
Ko te whārite \sqrt{\frac{2}{3}-5x}=\sqrt{3x+\frac{1}{2}} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}