Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{2}}{\sqrt{3}}\sqrt{27}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{27}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3}\sqrt{27}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}}{3}\sqrt{27}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}}{3}\times 3\sqrt{3}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\sqrt{6}\sqrt{3}
Me whakakore te 3 me te 3.
\sqrt{3}\sqrt{2}\sqrt{3}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
3\sqrt{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.