Aromātai
\frac{\sqrt{12215}}{105}\approx 1.05258563
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{16}{15}\times \frac{8}{7}-\frac{\frac{13}{15}}{\frac{13}{10}}+\frac{1}{3}\times \frac{5}{3}}
Whakawehe \frac{16}{15} ki te \frac{7}{8} mā te whakarea \frac{16}{15} ki te tau huripoki o \frac{7}{8}.
\sqrt{\frac{16\times 8}{15\times 7}-\frac{\frac{13}{15}}{\frac{13}{10}}+\frac{1}{3}\times \frac{5}{3}}
Me whakarea te \frac{16}{15} ki te \frac{8}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{128}{105}-\frac{\frac{13}{15}}{\frac{13}{10}}+\frac{1}{3}\times \frac{5}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 8}{15\times 7}.
\sqrt{\frac{128}{105}-\frac{13}{15}\times \frac{10}{13}+\frac{1}{3}\times \frac{5}{3}}
Whakawehe \frac{13}{15} ki te \frac{13}{10} mā te whakarea \frac{13}{15} ki te tau huripoki o \frac{13}{10}.
\sqrt{\frac{128}{105}-\frac{13\times 10}{15\times 13}+\frac{1}{3}\times \frac{5}{3}}
Me whakarea te \frac{13}{15} ki te \frac{10}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{128}{105}-\frac{10}{15}+\frac{1}{3}\times \frac{5}{3}}
Me whakakore tahi te 13 i te taurunga me te tauraro.
\sqrt{\frac{128}{105}-\frac{2}{3}+\frac{1}{3}\times \frac{5}{3}}
Whakahekea te hautanga \frac{10}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\frac{128}{105}-\frac{70}{105}+\frac{1}{3}\times \frac{5}{3}}
Ko te maha noa iti rawa atu o 105 me 3 ko 105. Me tahuri \frac{128}{105} me \frac{2}{3} ki te hautau me te tautūnga 105.
\sqrt{\frac{128-70}{105}+\frac{1}{3}\times \frac{5}{3}}
Tā te mea he rite te tauraro o \frac{128}{105} me \frac{70}{105}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{58}{105}+\frac{1}{3}\times \frac{5}{3}}
Tangohia te 70 i te 128, ka 58.
\sqrt{\frac{58}{105}+\frac{1\times 5}{3\times 3}}
Me whakarea te \frac{1}{3} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{58}{105}+\frac{5}{9}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 5}{3\times 3}.
\sqrt{\frac{174}{315}+\frac{175}{315}}
Ko te maha noa iti rawa atu o 105 me 9 ko 315. Me tahuri \frac{58}{105} me \frac{5}{9} ki te hautau me te tautūnga 315.
\sqrt{\frac{174+175}{315}}
Tā te mea he rite te tauraro o \frac{174}{315} me \frac{175}{315}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{349}{315}}
Tāpirihia te 174 ki te 175, ka 349.
\frac{\sqrt{349}}{\sqrt{315}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{349}{315}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{349}}{\sqrt{315}}.
\frac{\sqrt{349}}{3\sqrt{35}}
Tauwehea te 315=3^{2}\times 35. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 35} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{35}. Tuhia te pūtakerua o te 3^{2}.
\frac{\sqrt{349}\sqrt{35}}{3\left(\sqrt{35}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{349}}{3\sqrt{35}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{35}.
\frac{\sqrt{349}\sqrt{35}}{3\times 35}
Ko te pūrua o \sqrt{35} ko 35.
\frac{\sqrt{12215}}{3\times 35}
Hei whakarea \sqrt{349} me \sqrt{35}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{12215}}{105}
Whakareatia te 3 ki te 35, ka 105.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}