Aromātai
\frac{\sqrt{6594}}{70}\approx 1.16004926
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{3}{5}-\frac{36}{21}+\frac{123}{50}}
Whakahekea te hautanga \frac{15}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\frac{3}{5}-\frac{12}{7}+\frac{123}{50}}
Whakahekea te hautanga \frac{36}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{\frac{21}{35}-\frac{60}{35}+\frac{123}{50}}
Ko te maha noa iti rawa atu o 5 me 7 ko 35. Me tahuri \frac{3}{5} me \frac{12}{7} ki te hautau me te tautūnga 35.
\sqrt{\frac{21-60}{35}+\frac{123}{50}}
Tā te mea he rite te tauraro o \frac{21}{35} me \frac{60}{35}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{-\frac{39}{35}+\frac{123}{50}}
Tangohia te 60 i te 21, ka -39.
\sqrt{-\frac{390}{350}+\frac{861}{350}}
Ko te maha noa iti rawa atu o 35 me 50 ko 350. Me tahuri -\frac{39}{35} me \frac{123}{50} ki te hautau me te tautūnga 350.
\sqrt{\frac{-390+861}{350}}
Tā te mea he rite te tauraro o -\frac{390}{350} me \frac{861}{350}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{471}{350}}
Tāpirihia te -390 ki te 861, ka 471.
\frac{\sqrt{471}}{\sqrt{350}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{471}{350}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{471}}{\sqrt{350}}.
\frac{\sqrt{471}}{5\sqrt{14}}
Tauwehea te 350=5^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 14} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{14}. Tuhia te pūtakerua o te 5^{2}.
\frac{\sqrt{471}\sqrt{14}}{5\left(\sqrt{14}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{471}}{5\sqrt{14}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{14}.
\frac{\sqrt{471}\sqrt{14}}{5\times 14}
Ko te pūrua o \sqrt{14} ko 14.
\frac{\sqrt{6594}}{5\times 14}
Hei whakarea \sqrt{471} me \sqrt{14}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6594}}{70}
Whakareatia te 5 ki te 14, ka 70.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}