Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{11}}{\sqrt{25}}+3\sqrt{\frac{71}{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{11}{25}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{11}}{\sqrt{25}}.
\frac{\sqrt{11}}{5}+3\sqrt{\frac{71}{9}}-0.6\sqrt{3025}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{\sqrt{11}}{5}+3\times \frac{\sqrt{71}}{\sqrt{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{71}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{71}}{\sqrt{9}}.
\frac{\sqrt{11}}{5}+3\times \frac{\sqrt{71}}{3}-0.6\sqrt{3025}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{\sqrt{11}}{5}+\sqrt{71}-0.6\sqrt{3025}
Me whakakore te 3 me te 3.
\frac{\sqrt{11}}{5}+\sqrt{71}-0.6\times 55
Tātaitia te pūtakerua o 3025 kia tae ki 55.
\frac{\sqrt{11}}{5}+\sqrt{71}-33
Whakareatia te -0.6 ki te 55, ka -33.
\frac{\sqrt{11}}{5}+\frac{5\left(\sqrt{71}-33\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{71}-33 ki te \frac{5}{5}.
\frac{\sqrt{11}+5\left(\sqrt{71}-33\right)}{5}
Tā te mea he rite te tauraro o \frac{\sqrt{11}}{5} me \frac{5\left(\sqrt{71}-33\right)}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{11}+5\sqrt{71}-165}{5}
Mahia ngā whakarea i roto o \sqrt{11}+5\left(\sqrt{71}-33\right).