Aromātai
\frac{\sqrt{11}}{5}+\sqrt{71}-33\approx -23.910525269
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{11}}{\sqrt{25}}+3\sqrt{\frac{71}{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{11}{25}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{11}}{\sqrt{25}}.
\frac{\sqrt{11}}{5}+3\sqrt{\frac{71}{9}}-0.6\sqrt{3025}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{\sqrt{11}}{5}+3\times \frac{\sqrt{71}}{\sqrt{9}}-0.6\sqrt{3025}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{71}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{71}}{\sqrt{9}}.
\frac{\sqrt{11}}{5}+3\times \frac{\sqrt{71}}{3}-0.6\sqrt{3025}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{\sqrt{11}}{5}+\sqrt{71}-0.6\sqrt{3025}
Me whakakore te 3 me te 3.
\frac{\sqrt{11}}{5}+\sqrt{71}-0.6\times 55
Tātaitia te pūtakerua o 3025 kia tae ki 55.
\frac{\sqrt{11}}{5}+\sqrt{71}-33
Whakareatia te -0.6 ki te 55, ka -33.
\frac{\sqrt{11}}{5}+\frac{5\left(\sqrt{71}-33\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{71}-33 ki te \frac{5}{5}.
\frac{\sqrt{11}+5\left(\sqrt{71}-33\right)}{5}
Tā te mea he rite te tauraro o \frac{\sqrt{11}}{5} me \frac{5\left(\sqrt{71}-33\right)}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{11}+5\sqrt{71}-165}{5}
Mahia ngā whakarea i roto o \sqrt{11}+5\left(\sqrt{71}-33\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}