Tīpoka ki ngā ihirangi matua
Whakaoti mō T
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{1}}{\sqrt{3}}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}}{3}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}}{3}=\frac{\sqrt{T}}{\frac{1}{1}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{3}}{3}=\frac{\sqrt{T}}{1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\sqrt{3}}{3}=\sqrt{T}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\sqrt{T}=\frac{\sqrt{3}}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
T=\frac{1}{3}
Pūruatia ngā taha e rua o te whārite.