Whakaoti mō T
T=\frac{1}{3}\approx 0.333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{1}}{\sqrt{3}}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}}{3}=\frac{\sqrt{T}}{\frac{\sqrt{1}}{1}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}}{3}=\frac{\sqrt{T}}{\frac{1}{1}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{3}}{3}=\frac{\sqrt{T}}{1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\sqrt{3}}{3}=\sqrt{T}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\sqrt{T}=\frac{\sqrt{3}}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
T=\frac{1}{3}
Pūruatia ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}