Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{1}{19}\left(112-\frac{38^{2}}{20}\right)}
Tangohia te 1 i te 20, ka 19.
\sqrt{\frac{1}{19}\left(112-\frac{1444}{20}\right)}
Tātaihia te 38 mā te pū o 2, kia riro ko 1444.
\sqrt{\frac{1}{19}\left(112-\frac{361}{5}\right)}
Whakahekea te hautanga \frac{1444}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\sqrt{\frac{1}{19}\left(\frac{560}{5}-\frac{361}{5}\right)}
Me tahuri te 112 ki te hautau \frac{560}{5}.
\sqrt{\frac{1}{19}\times \frac{560-361}{5}}
Tā te mea he rite te tauraro o \frac{560}{5} me \frac{361}{5}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{1}{19}\times \frac{199}{5}}
Tangohia te 361 i te 560, ka 199.
\sqrt{\frac{1\times 199}{19\times 5}}
Me whakarea te \frac{1}{19} ki te \frac{199}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{199}{95}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 199}{19\times 5}.
\frac{\sqrt{199}}{\sqrt{95}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{199}{95}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{199}}{\sqrt{95}}.
\frac{\sqrt{199}\sqrt{95}}{\left(\sqrt{95}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{199}}{\sqrt{95}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{95}.
\frac{\sqrt{199}\sqrt{95}}{95}
Ko te pūrua o \sqrt{95} ko 95.
\frac{\sqrt{18905}}{95}
Hei whakarea \sqrt{199} me \sqrt{95}, whakareatia ngā tau i raro i te pūtake rua.