Aromātai
\frac{5\sqrt{5}}{4}\approx 2.795084972
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{125}{16}}
Ka taea te hautanga \frac{-125}{-16} te whakamāmā ki te \frac{125}{16} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
\frac{\sqrt{125}}{\sqrt{16}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{125}{16}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{125}}{\sqrt{16}}.
\frac{5\sqrt{5}}{\sqrt{16}}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{5}}{4}
Tātaitia te pūtakerua o 16 kia tae ki 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}