Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\left(2-\frac{1}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{3}{2} ki te \frac{3}{10}, ka \frac{9}{20}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \left(\frac{5}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tangohia te \frac{1}{3} i te 2, ka \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \frac{25}{9}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tātaihia te \frac{5}{3} mā te pū o 2, kia riro ko \frac{25}{9}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{5}{3}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{3}{5} ki te \frac{25}{9}, ka \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{2}{15}\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tangohia te \frac{5}{3} i te \frac{9}{5}, ka \frac{2}{15}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{1}{5}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{2}{15} ki te \frac{3}{2}, ka \frac{1}{5}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tāpirihia te \frac{9}{20} ki te \frac{1}{5}, ka \frac{13}{20}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{13}{5}}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tāpirihia te \frac{3}{5} ki te 2, ka \frac{13}{5}.
\sqrt{\frac{\frac{13}{20}\times \frac{5}{13}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakawehe \frac{13}{20} ki te \frac{13}{5} mā te whakarea \frac{13}{20} ki te tau huripoki o \frac{13}{5}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{13}{20} ki te \frac{5}{13}, ka \frac{1}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\times \frac{13}{4}\right)}}
Tāpirihia te \frac{1}{4} ki te 3, ka \frac{13}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{1}{2}\right)}}
Whakareatia te \frac{2}{13} ki te \frac{13}{4}, ka \frac{1}{2}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\times \frac{2}{3}}}
Tāpirihia te \frac{1}{6} ki te \frac{1}{2}, ka \frac{2}{3}.
\sqrt{\frac{\frac{1}{4}}{\frac{4}{9}}}
Whakareatia te \frac{2}{3} ki te \frac{2}{3}, ka \frac{4}{9}.
\sqrt{\frac{1}{4}\times \frac{9}{4}}
Whakawehe \frac{1}{4} ki te \frac{4}{9} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{4}{9}.
\sqrt{\frac{9}{16}}
Whakareatia te \frac{1}{4} ki te \frac{9}{4}, ka \frac{9}{16}.
\frac{3}{4}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.