Aromātai
\frac{3}{4}=0.75
Tauwehe
\frac{3}{2 ^ {2}} = 0.75
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\left(2-\frac{1}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{3}{2} ki te \frac{3}{10}, ka \frac{9}{20}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \left(\frac{5}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tangohia te \frac{1}{3} i te 2, ka \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \frac{25}{9}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tātaihia te \frac{5}{3} mā te pū o 2, kia riro ko \frac{25}{9}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{5}{3}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{3}{5} ki te \frac{25}{9}, ka \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{2}{15}\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tangohia te \frac{5}{3} i te \frac{9}{5}, ka \frac{2}{15}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{1}{5}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{2}{15} ki te \frac{3}{2}, ka \frac{1}{5}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tāpirihia te \frac{9}{20} ki te \frac{1}{5}, ka \frac{13}{20}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{13}{5}}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Tāpirihia te \frac{3}{5} ki te 2, ka \frac{13}{5}.
\sqrt{\frac{\frac{13}{20}\times \frac{5}{13}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakawehe \frac{13}{20} ki te \frac{13}{5} mā te whakarea \frac{13}{20} ki te tau huripoki o \frac{13}{5}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Whakareatia te \frac{13}{20} ki te \frac{5}{13}, ka \frac{1}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\times \frac{13}{4}\right)}}
Tāpirihia te \frac{1}{4} ki te 3, ka \frac{13}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{1}{2}\right)}}
Whakareatia te \frac{2}{13} ki te \frac{13}{4}, ka \frac{1}{2}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\times \frac{2}{3}}}
Tāpirihia te \frac{1}{6} ki te \frac{1}{2}, ka \frac{2}{3}.
\sqrt{\frac{\frac{1}{4}}{\frac{4}{9}}}
Whakareatia te \frac{2}{3} ki te \frac{2}{3}, ka \frac{4}{9}.
\sqrt{\frac{1}{4}\times \frac{9}{4}}
Whakawehe \frac{1}{4} ki te \frac{4}{9} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{4}{9}.
\sqrt{\frac{9}{16}}
Whakareatia te \frac{1}{4} ki te \frac{9}{4}, ka \frac{9}{16}.
\frac{3}{4}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}