Aromātai
\frac{5}{2}=2.5
Tauwehe
\frac{5}{2} = 2\frac{1}{2} = 2.5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\frac{13}{6}-\left(\frac{\left(1+\frac{1}{3}\right)^{2}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Tangohia te \frac{1}{2} i te \frac{8}{3}, ka \frac{13}{6}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{\left(\frac{4}{3}\right)^{2}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Tāpirihia te 1 ki te \frac{1}{3}, ka \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{\frac{16}{9}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Tātaihia te \frac{4}{3} mā te pū o 2, kia riro ko \frac{16}{9}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{16}{9}\times \frac{3}{4}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Whakawehe \frac{16}{9} ki te \frac{4}{3} mā te whakarea \frac{16}{9} ki te tau huripoki o \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{4}{3}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Whakareatia te \frac{16}{9} ki te \frac{3}{4}, ka \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\frac{23}{15}\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Tāpirihia te \frac{4}{3} ki te \frac{1}{5}, ka \frac{23}{15}.
\sqrt{\frac{\frac{13}{6}-\frac{1}{6}+2-\frac{1}{4}}{\frac{3}{5}}}
Whakareatia te \frac{23}{15} ki te \frac{5}{46}, ka \frac{1}{6}.
\sqrt{\frac{2+2-\frac{1}{4}}{\frac{3}{5}}}
Tangohia te \frac{1}{6} i te \frac{13}{6}, ka 2.
\sqrt{\frac{4-\frac{1}{4}}{\frac{3}{5}}}
Tāpirihia te 2 ki te 2, ka 4.
\sqrt{\frac{\frac{15}{4}}{\frac{3}{5}}}
Tangohia te \frac{1}{4} i te 4, ka \frac{15}{4}.
\sqrt{\frac{15}{4}\times \frac{5}{3}}
Whakawehe \frac{15}{4} ki te \frac{3}{5} mā te whakarea \frac{15}{4} ki te tau huripoki o \frac{3}{5}.
\sqrt{\frac{25}{4}}
Whakareatia te \frac{15}{4} ki te \frac{5}{3}, ka \frac{25}{4}.
\frac{5}{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{25}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}