Aromātai
\frac{3}{8}=0.375
Tauwehe
\frac{3}{2 ^ {3}} = 0.375
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{1}{3}+\frac{1\times 12}{4\times 7}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Me whakarea te \frac{1}{4} ki te \frac{12}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{1}{3}+\frac{12}{28}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 12}{4\times 7}.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{1}{3}+\frac{3}{7}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Whakahekea te hautanga \frac{12}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\left(\frac{7}{21}+\frac{9}{21}\right)-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Ko te maha noa iti rawa atu o 3 me 7 ko 21. Me tahuri \frac{1}{3} me \frac{3}{7} ki te hautau me te tautūnga 21.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\times \frac{7+9}{21}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Tā te mea he rite te tauraro o \frac{7}{21} me \frac{9}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3}{4}\times \frac{16}{21}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Tāpirihia te 7 ki te 9, ka 16.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{3\times 16}{4\times 21}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Me whakarea te \frac{3}{4} ki te \frac{16}{21} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{48}{84}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 16}{4\times 21}.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{1+\frac{4}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Whakahekea te hautanga \frac{48}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{7}{7}+\frac{4}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Me tahuri te 1 ki te hautau \frac{7}{7}.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{7+4}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Tā te mea he rite te tauraro o \frac{7}{7} me \frac{4}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{11}{7}-\frac{1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Tāpirihia te 7 ki te 4, ka 11.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{11-1}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Tā te mea he rite te tauraro o \frac{11}{7} me \frac{1}{7}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\left(\frac{2}{3}+\frac{\frac{5}{4}}{\frac{10}{7}}\right)\times \frac{3}{37}+\frac{1}{64}}
Tangohia te 1 i te 11, ka 10.
\sqrt{\left(\frac{2}{3}+\frac{5}{4}\times \frac{7}{10}\right)\times \frac{3}{37}+\frac{1}{64}}
Whakawehe \frac{5}{4} ki te \frac{10}{7} mā te whakarea \frac{5}{4} ki te tau huripoki o \frac{10}{7}.
\sqrt{\left(\frac{2}{3}+\frac{5\times 7}{4\times 10}\right)\times \frac{3}{37}+\frac{1}{64}}
Me whakarea te \frac{5}{4} ki te \frac{7}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\left(\frac{2}{3}+\frac{35}{40}\right)\times \frac{3}{37}+\frac{1}{64}}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 7}{4\times 10}.
\sqrt{\left(\frac{2}{3}+\frac{7}{8}\right)\times \frac{3}{37}+\frac{1}{64}}
Whakahekea te hautanga \frac{35}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\left(\frac{16}{24}+\frac{21}{24}\right)\times \frac{3}{37}+\frac{1}{64}}
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{2}{3} me \frac{7}{8} ki te hautau me te tautūnga 24.
\sqrt{\frac{16+21}{24}\times \frac{3}{37}+\frac{1}{64}}
Tā te mea he rite te tauraro o \frac{16}{24} me \frac{21}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{37}{24}\times \frac{3}{37}+\frac{1}{64}}
Tāpirihia te 16 ki te 21, ka 37.
\sqrt{\frac{37\times 3}{24\times 37}+\frac{1}{64}}
Me whakarea te \frac{37}{24} ki te \frac{3}{37} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{3}{24}+\frac{1}{64}}
Me whakakore tahi te 37 i te taurunga me te tauraro.
\sqrt{\frac{1}{8}+\frac{1}{64}}
Whakahekea te hautanga \frac{3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{\frac{8}{64}+\frac{1}{64}}
Ko te maha noa iti rawa atu o 8 me 64 ko 64. Me tahuri \frac{1}{8} me \frac{1}{64} ki te hautau me te tautūnga 64.
\sqrt{\frac{8+1}{64}}
Tā te mea he rite te tauraro o \frac{8}{64} me \frac{1}{64}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{9}{64}}
Tāpirihia te 8 ki te 1, ka 9.
\frac{3}{8}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{64} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{64}}. Tuhia te pūtakerua o te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}