Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{\frac{\frac{\frac{6}{10}+\frac{1}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{3}{5} me \frac{1}{10} ki te hautau me te tautūnga 10.
\sqrt{\frac{\frac{\frac{\frac{6+1}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tā te mea he rite te tauraro o \frac{6}{10} me \frac{1}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{\frac{\frac{\frac{7}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tāpirihia te 6 ki te 1, ka 7.
\sqrt{\frac{\frac{\frac{7}{10}\times \frac{20}{7}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Whakawehe \frac{7}{10} ki te \frac{7}{20} mā te whakarea \frac{7}{10} ki te tau huripoki o \frac{7}{20}.
\sqrt{\frac{\frac{\frac{7\times 20}{10\times 7}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Me whakarea te \frac{7}{10} ki te \frac{20}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{\frac{\frac{20}{10}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Me whakakore tahi te 7 i te taurunga me te tauraro.
\sqrt{\frac{\frac{2-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Whakawehea te 20 ki te 10, kia riro ko 2.
\sqrt{\frac{\frac{2-\left(\frac{12}{10}+\frac{35}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri \frac{6}{5} me \frac{7}{2} ki te hautau me te tautūnga 10.
\sqrt{\frac{\frac{2-\left(\frac{12+35}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tā te mea he rite te tauraro o \frac{12}{10} me \frac{35}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{\frac{2-\left(\frac{47}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tāpirihia te 12 ki te 35, ka 47.
\sqrt{\frac{\frac{2-\left(\frac{47}{10}-\frac{28}{10}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri \frac{47}{10} me \frac{14}{5} ki te hautau me te tautūnga 10.
\sqrt{\frac{\frac{2-\frac{47-28}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tā te mea he rite te tauraro o \frac{47}{10} me \frac{28}{10}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{\frac{2-\frac{19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tangohia te 28 i te 47, ka 19.
\sqrt{\frac{\frac{\frac{20}{10}-\frac{19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Me tahuri te 2 ki te hautau \frac{20}{10}.
\sqrt{\frac{\frac{\frac{20-19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tā te mea he rite te tauraro o \frac{20}{10} me \frac{19}{10}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{\frac{\frac{1}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Tangohia te 19 i te 20, ka 1.
\sqrt{\frac{\frac{1}{10}\times \frac{3}{2}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Whakawehe \frac{1}{10} ki te \frac{2}{3} mā te whakarea \frac{1}{10} ki te tau huripoki o \frac{2}{3}.
\sqrt{\frac{\frac{1\times 3}{10\times 2}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Me whakarea te \frac{1}{10} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{\frac{3}{20}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{10\times 2}.
\sqrt{\frac{\frac{9}{60}-\frac{4}{60}}{\left(\frac{2}{3}\right)^{2}}}
Ko te maha noa iti rawa atu o 20 me 15 ko 60. Me tahuri \frac{3}{20} me \frac{1}{15} ki te hautau me te tautūnga 60.
\sqrt{\frac{\frac{9-4}{60}}{\left(\frac{2}{3}\right)^{2}}}
Tā te mea he rite te tauraro o \frac{9}{60} me \frac{4}{60}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{\frac{5}{60}}{\left(\frac{2}{3}\right)^{2}}}
Tangohia te 4 i te 9, ka 5.
\sqrt{\frac{\frac{1}{12}}{\left(\frac{2}{3}\right)^{2}}}
Whakahekea te hautanga \frac{5}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\frac{\frac{1}{12}}{\frac{4}{9}}}
Tātaihia te \frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\sqrt{\frac{1}{12}\times \frac{9}{4}}
Whakawehe \frac{1}{12} ki te \frac{4}{9} mā te whakarea \frac{1}{12} ki te tau huripoki o \frac{4}{9}.
\sqrt{\frac{1\times 9}{12\times 4}}
Me whakarea te \frac{1}{12} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{9}{48}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 9}{12\times 4}.
\sqrt{\frac{3}{16}}
Whakahekea te hautanga \frac{9}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\sqrt{3}}{\sqrt{16}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{16}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{16}}.
\frac{\sqrt{3}}{4}
Tātaitia te pūtakerua o 16 kia tae ki 4.