Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{6}\right)^{6}+1-\left(\frac{2}{3}+\frac{7}{6}+\frac{2}{12}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\sqrt{\left(\frac{7}{6}-\frac{1}{6}\right)^{6}+1-\left(\frac{2}{3}+\frac{7}{6}+\frac{2}{12}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tāpirihia te \frac{2}{3} ki te \frac{1}{2}, ka \frac{7}{6}.
\sqrt{1^{6}+1-\left(\frac{2}{3}+\frac{7}{6}+\frac{2}{12}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tangohia te \frac{1}{6} i te \frac{7}{6}, ka 1.
\sqrt{1+1-\left(\frac{2}{3}+\frac{7}{6}+\frac{2}{12}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tātaihia te 1 mā te pū o 6, kia riro ko 1.
\sqrt{2-\left(\frac{2}{3}+\frac{7}{6}+\frac{2}{12}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tāpirihia te 1 ki te 1, ka 2.
\sqrt{2-\left(\frac{11}{6}+\frac{2}{12}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tāpirihia te \frac{2}{3} ki te \frac{7}{6}, ka \frac{11}{6}.
\sqrt{2-\left(\frac{11}{6}+\frac{1}{6}\right)+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{2-2+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tāpirihia te \frac{11}{6} ki te \frac{1}{6}, ka 2.
\sqrt{0+\left(15\left(\frac{1}{3}+\frac{1}{5}\right)\right)^{2}}
Tangohia te 2 i te 2, ka 0.
\sqrt{0+\left(15\times \frac{8}{15}\right)^{2}}
Tāpirihia te \frac{1}{3} ki te \frac{1}{5}, ka \frac{8}{15}.
\sqrt{0+8^{2}}
Whakareatia te 15 ki te \frac{8}{15}, ka 8.
\sqrt{0+64}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
\sqrt{64}
Tāpirihia te 0 ki te 64, ka 64.
8
Tātaitia te pūtakerua o 64 kia tae ki 8.