Aromātai
\frac{\sqrt{9688405}}{11}\approx 282.965479891
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\left(169-\left(0\times 7\right)^{2}+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Tātaihia te 13 mā te pū o 2, kia riro ko 169.
\sqrt{\frac{\left(169-0^{2}+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Whakareatia te 0 ki te 7, ka 0.
\sqrt{\frac{\left(169-0+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\sqrt{\frac{\left(169+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Tangohia te 0 i te 169, ka 169.
\sqrt{\frac{201^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Tāpirihia te 169 ki te 32, ka 201.
\sqrt{\frac{40401}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Tātaihia te 201 mā te pū o 2, kia riro ko 40401.
\sqrt{\frac{40401}{121}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
\sqrt{\frac{202005}{121}+\left(28^{2}-0\times 23\right)\times 10^{2}}
Whakareatia te \frac{40401}{121} ki te 5, ka \frac{202005}{121}.
\sqrt{\frac{202005}{121}+\left(784-0\times 23\right)\times 10^{2}}
Tātaihia te 28 mā te pū o 2, kia riro ko 784.
\sqrt{\frac{202005}{121}+\left(784-0\right)\times 10^{2}}
Whakareatia te 0 ki te 23, ka 0.
\sqrt{\frac{202005}{121}+784\times 10^{2}}
Tangohia te 0 i te 784, ka 784.
\sqrt{\frac{202005}{121}+784\times 100}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\sqrt{\frac{202005}{121}+78400}
Whakareatia te 784 ki te 100, ka 78400.
\sqrt{\frac{9688405}{121}}
Tāpirihia te \frac{202005}{121} ki te 78400, ka \frac{9688405}{121}.
\frac{\sqrt{9688405}}{\sqrt{121}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{9688405}{121}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9688405}}{\sqrt{121}}.
\frac{\sqrt{9688405}}{11}
Tātaitia te pūtakerua o 121 kia tae ki 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}