Aromātai
\frac{\sqrt{19045}}{5}\approx 27.600724628
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\left(1.69-0.7^{2}+3.2\right)^{2}}{11^{2}}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Tātaihia te 1.3 mā te pū o 2, kia riro ko 1.69.
\sqrt{\frac{\left(1.69-0.49+3.2\right)^{2}}{11^{2}}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Tātaihia te 0.7 mā te pū o 2, kia riro ko 0.49.
\sqrt{\frac{\left(1.2+3.2\right)^{2}}{11^{2}}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Tangohia te 0.49 i te 1.69, ka 1.2.
\sqrt{\frac{4.4^{2}}{11^{2}}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Tāpirihia te 1.2 ki te 3.2, ka 4.4.
\sqrt{\frac{19.36}{11^{2}}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Tātaihia te 4.4 mā te pū o 2, kia riro ko 19.36.
\sqrt{\frac{19.36}{121}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
\sqrt{\frac{1936}{12100}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Whakarohaina te \frac{19.36}{121} mā te whakarea i te taurunga me te tauraro ki te 100.
\sqrt{\frac{4}{25}\times 5+\left(2.8^{2}-0.23\right)\times 10^{2}}
Whakahekea te hautanga \frac{1936}{12100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 484.
\sqrt{\frac{4}{5}+\left(2.8^{2}-0.23\right)\times 10^{2}}
Whakareatia te \frac{4}{25} ki te 5, ka \frac{4}{5}.
\sqrt{\frac{4}{5}+\left(7.84-0.23\right)\times 10^{2}}
Tātaihia te 2.8 mā te pū o 2, kia riro ko 7.84.
\sqrt{\frac{4}{5}+7.61\times 10^{2}}
Tangohia te 0.23 i te 7.84, ka 7.61.
\sqrt{\frac{4}{5}+7.61\times 100}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\sqrt{\frac{4}{5}+761}
Whakareatia te 7.61 ki te 100, ka 761.
\sqrt{\frac{3809}{5}}
Tāpirihia te \frac{4}{5} ki te 761, ka \frac{3809}{5}.
\frac{\sqrt{3809}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3809}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3809}}{\sqrt{5}}.
\frac{\sqrt{3809}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3809}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{3809}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{19045}}{5}
Hei whakarea \sqrt{3809} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}