Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\frac{4}{13}\left(7-\frac{1\times 75}{5\times 4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Me whakarea te \frac{1}{5} ki te \frac{75}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{\frac{4}{13}\left(7-\frac{75}{20}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 75}{5\times 4}.
\sqrt{\frac{\frac{4}{13}\left(7-\frac{15}{4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Whakahekea te hautanga \frac{75}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\frac{\frac{4}{13}\left(\frac{28}{4}-\frac{15}{4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Me tahuri te 7 ki te hautau \frac{28}{4}.
\sqrt{\frac{\frac{4}{13}\times \frac{28-15}{4}}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tā te mea he rite te tauraro o \frac{28}{4} me \frac{15}{4}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{\frac{4}{13}\times \frac{13}{4}}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tangohia te 15 i te 28, ka 13.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Me whakakore atu te \frac{4}{13} me tōna tau utu \frac{13}{4}.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5}{6}\times 2\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Whakawehe \frac{5}{6} ki te \frac{1}{2} mā te whakarea \frac{5}{6} ki te tau huripoki o \frac{1}{2}.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5\times 2}{6}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tuhia te \frac{5}{6}\times 2 hei hautanga kotahi.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{10}{6}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Whakareatia te 5 ki te 2, ka 10.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5}{3}\right)}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{1}{\frac{16}{3}\times \frac{4+5}{3}}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tā te mea he rite te tauraro o \frac{4}{3} me \frac{5}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{1}{\frac{16}{3}\times \frac{9}{3}}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tāpirihia te 4 ki te 5, ka 9.
\sqrt{\frac{1}{\frac{16}{3}\times 3}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Whakawehea te 9 ki te 3, kia riro ko 3.
\sqrt{\frac{1}{16}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Me whakakore te 3 me te 3.
\frac{1}{4}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{4}+\sqrt{\left(\frac{212}{20}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Ko te maha noa iti rawa atu o 5 me 20 ko 20. Me tahuri \frac{53}{5} me \frac{63}{20} ki te hautau me te tautūnga 20.
\frac{1}{4}+\sqrt{\left(\frac{212-63}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tā te mea he rite te tauraro o \frac{212}{20} me \frac{63}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}+\sqrt{\left(\frac{149}{20}-5\right)\left(1+\frac{1}{4}\right)}
Tangohia te 63 i te 212, ka 149.
\frac{1}{4}+\sqrt{\left(\frac{149}{20}-\frac{100}{20}\right)\left(1+\frac{1}{4}\right)}
Me tahuri te 5 ki te hautau \frac{100}{20}.
\frac{1}{4}+\sqrt{\frac{149-100}{20}\left(1+\frac{1}{4}\right)}
Tā te mea he rite te tauraro o \frac{149}{20} me \frac{100}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}+\sqrt{\frac{49}{20}\left(1+\frac{1}{4}\right)}
Tangohia te 100 i te 149, ka 49.
\frac{1}{4}+\sqrt{\frac{49}{20}\left(\frac{4}{4}+\frac{1}{4}\right)}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{1}{4}+\sqrt{\frac{49}{20}\times \frac{4+1}{4}}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{4}+\sqrt{\frac{49}{20}\times \frac{5}{4}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{1}{4}+\sqrt{\frac{49\times 5}{20\times 4}}
Me whakarea te \frac{49}{20} ki te \frac{5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{4}+\sqrt{\frac{245}{80}}
Mahia ngā whakarea i roto i te hautanga \frac{49\times 5}{20\times 4}.
\frac{1}{4}+\sqrt{\frac{49}{16}}
Whakahekea te hautanga \frac{245}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{4}+\frac{7}{4}
Tuhia anō te pūtake rua o te whakawehenga \frac{49}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{49}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1+7}{4}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{7}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{4}
Tāpirihia te 1 ki te 7, ka 8.
2
Whakawehea te 8 ki te 4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}