Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki h
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}h}(\sin(h))=\left(\lim_{t\to 0}\frac{\sin(h+t)-\sin(h)}{t}\right)
Mō tētahi pānga f\left(x\right), ko te pārōnaki te tepe o \frac{f\left(x+h\right)-f\left(x\right)}{h} ina haere h ki 0, mēnā kei reira taua tepe.
\lim_{t\to 0}\frac{\sin(t+h)-\sin(h)}{t}
Whakamahia te Tikanga Tātai Tapeke mō te Aho.
\lim_{t\to 0}\frac{\sin(h)\left(\cos(t)-1\right)+\cos(h)\sin(t)}{t}
Tauwehea te \sin(h).
\left(\lim_{t\to 0}\sin(h)\right)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\left(\lim_{t\to 0}\cos(h)\right)\left(\lim_{t\to 0}\frac{\sin(t)}{t}\right)
Tuhia anō te tepe.
\sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h)\left(\lim_{t\to 0}\frac{\sin(t)}{t}\right)
Whakamahia te meka ko h he pūmau ina tātai tepe i te wā ka haere t ki te 0.
\sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h)
Ko te tepe \lim_{h\to 0}\frac{\sin(h)}{h} he 1.
\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)=\left(\lim_{t\to 0}\frac{\left(\cos(t)-1\right)\left(\cos(t)+1\right)}{t\left(\cos(t)+1\right)}\right)
Hei arotake i te tepe \lim_{t\to 0}\frac{\cos(t)-1}{t}, tuatahi me whakarea te taurunga me te tauraro ki te \cos(t)+1.
\lim_{t\to 0}\frac{\left(\cos(t)\right)^{2}-1}{t\left(\cos(t)+1\right)}
Whakareatia \cos(t)+1 ki te \cos(t)-1.
\lim_{t\to 0}-\frac{\left(\sin(t)\right)^{2}}{t\left(\cos(t)+1\right)}
Whakamahia te Tuakiri Pythagorean.
\left(\lim_{t\to 0}-\frac{\sin(t)}{t}\right)\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)
Tuhia anō te tepe.
-\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)
Ko te tepe \lim_{h\to 0}\frac{\sin(h)}{h} he 1.
\left(\lim_{t\to 0}\frac{\sin(t)}{\cos(t)+1}\right)=0
Whakamahia te meka he motukore a \frac{\sin(t)}{\cos(t)+1} i 0.
\cos(h)
Whakakapihia te uara 0 ki roto i te kīanga \sin(h)\left(\lim_{t\to 0}\frac{\cos(t)-1}{t}\right)+\cos(h).