Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{b}\left(1-\left(\sin(a)\right)^{2}\right)=\sin(a)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{b}-\sqrt{b}\left(\sin(a)\right)^{2}=\sin(a)
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{b} ki te 1-\left(\sin(a)\right)^{2}.
\left(1-\left(\sin(a)\right)^{2}\right)\sqrt{b}=\sin(a)
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\frac{\left(-\left(\sin(a)\right)^{2}+1\right)\sqrt{b}}{-\left(\sin(a)\right)^{2}+1}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Whakawehea ngā taha e rua ki te 1-\left(\sin(a)\right)^{2}.
\sqrt{b}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Mā te whakawehe ki te 1-\left(\sin(a)\right)^{2} ka wetekia te whakareanga ki te 1-\left(\sin(a)\right)^{2}.
\sqrt{b}=\frac{\tan(a)}{\cos(a)}
Whakawehe \sin(a) ki te 1-\left(\sin(a)\right)^{2}.
b=\frac{\left(\tan(a)\right)^{2}}{\left(\cos(a)\right)^{2}}
Pūruatia ngā taha e rua o te whārite.