Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{\sqrt{2}}{2}+3\tan(30)+\tan(60)-2\cos(60)
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}+3\times \frac{\sqrt{3}}{3}+\tan(60)-2\cos(60)
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}+\sqrt{3}+\tan(60)-2\cos(60)
Me whakakore te 3 me te 3.
\frac{\sqrt{2}}{2}+\sqrt{3}+\sqrt{3}-2\cos(60)
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}+2\sqrt{3}-2\cos(60)
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{\sqrt{2}}{2}+\frac{2\times 2\sqrt{3}}{2}-2\cos(60)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{3} ki te \frac{2}{2}.
\frac{\sqrt{2}+2\times 2\sqrt{3}}{2}-2\cos(60)
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{2\times 2\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{2}+4\sqrt{3}}{2}-2\cos(60)
Mahia ngā whakarea i roto o \sqrt{2}+2\times 2\sqrt{3}.
\frac{\sqrt{2}+4\sqrt{3}}{2}-2\times \frac{1}{2}
Tīkina te uara \cos(60) mai i te ripanga uara pākoki.
\frac{\sqrt{2}+4\sqrt{3}}{2}-1
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
\frac{\sqrt{2}+4\sqrt{3}}{2}-\frac{2}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2}{2}.
\frac{\sqrt{2}+4\sqrt{3}-2}{2}
Tā te mea he rite te tauraro o \frac{\sqrt{2}+4\sqrt{3}}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.