Aromātai
\frac{\sqrt{2}}{2}+2\sqrt{3}-1\approx 3.171208396
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{2}}{2}+3\tan(30)+\tan(60)-2\cos(60)
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}+3\times \frac{\sqrt{3}}{3}+\tan(60)-2\cos(60)
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}+\sqrt{3}+\tan(60)-2\cos(60)
Me whakakore te 3 me te 3.
\frac{\sqrt{2}}{2}+\sqrt{3}+\sqrt{3}-2\cos(60)
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}+2\sqrt{3}-2\cos(60)
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{\sqrt{2}}{2}+\frac{2\times 2\sqrt{3}}{2}-2\cos(60)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{3} ki te \frac{2}{2}.
\frac{\sqrt{2}+2\times 2\sqrt{3}}{2}-2\cos(60)
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{2\times 2\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{2}+4\sqrt{3}}{2}-2\cos(60)
Mahia ngā whakarea i roto o \sqrt{2}+2\times 2\sqrt{3}.
\frac{\sqrt{2}+4\sqrt{3}}{2}-2\times \frac{1}{2}
Tīkina te uara \cos(60) mai i te ripanga uara pākoki.
\frac{\sqrt{2}+4\sqrt{3}}{2}-1
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
\frac{\sqrt{2}+4\sqrt{3}}{2}-\frac{2}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2}{2}.
\frac{\sqrt{2}+4\sqrt{3}-2}{2}
Tā te mea he rite te tauraro o \frac{\sqrt{2}+4\sqrt{3}}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}