Whakaoti mō A
A=\frac{130000000000000000}{8064063186655591D}
D\neq 0
Whakaoti mō D
D=\frac{130000000000000000}{8064063186655591A}
A\neq 0
Tohaina
Kua tāruatia ki te papatopenga
0.24192189559966773 = \frac{3.9}{A D}
Evaluate trigonometric functions in the problem
0.24192189559966773AD=3.9
Tē taea kia ōrite te tāupe A ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te AD.
AD=\frac{3.9}{0.24192189559966773}
Whakawehea ngā taha e rua ki te 0.24192189559966773.
AD=\frac{390000000000000000}{24192189559966773}
Whakarohaina te \frac{3.9}{0.24192189559966773} mā te whakarea i te taurunga me te tauraro ki te 100000000000000000.
AD=\frac{130000000000000000}{8064063186655591}
Whakahekea te hautanga \frac{390000000000000000}{24192189559966773} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
DA=\frac{130000000000000000}{8064063186655591}
He hanga arowhānui tō te whārite.
\frac{DA}{D}=\frac{\frac{130000000000000000}{8064063186655591}}{D}
Whakawehea ngā taha e rua ki te D.
A=\frac{\frac{130000000000000000}{8064063186655591}}{D}
Mā te whakawehe ki te D ka wetekia te whakareanga ki te D.
A=\frac{130000000000000000}{8064063186655591D}
Whakawehe \frac{130000000000000000}{8064063186655591} ki te D.
A=\frac{130000000000000000}{8064063186655591D}\text{, }A\neq 0
Tē taea kia ōrite te tāupe A ki 0.
0.24192189559966773 = \frac{3.9}{A D}
Evaluate trigonometric functions in the problem
0.24192189559966773AD=3.9
Tē taea kia ōrite te tāupe D ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te AD.
AD=\frac{3.9}{0.24192189559966773}
Whakawehea ngā taha e rua ki te 0.24192189559966773.
AD=\frac{390000000000000000}{24192189559966773}
Whakarohaina te \frac{3.9}{0.24192189559966773} mā te whakarea i te taurunga me te tauraro ki te 100000000000000000.
AD=\frac{130000000000000000}{8064063186655591}
Whakahekea te hautanga \frac{390000000000000000}{24192189559966773} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{AD}{A}=\frac{\frac{130000000000000000}{8064063186655591}}{A}
Whakawehea ngā taha e rua ki te A.
D=\frac{\frac{130000000000000000}{8064063186655591}}{A}
Mā te whakawehe ki te A ka wetekia te whakareanga ki te A.
D=\frac{130000000000000000}{8064063186655591A}
Whakawehe \frac{130000000000000000}{8064063186655591} ki te A.
D=\frac{130000000000000000}{8064063186655591A}\text{, }D\neq 0
Tē taea kia ōrite te tāupe D ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}